Research & Faculty

Default Header Image

A preliminary study on the effects of lanthanum (III) on plant vitronectin-like protein and its toxicological basis

TitleA preliminary study on the effects of lanthanum (III) on plant vitronectin-like protein and its toxicological basis
Publication TypeJournal Article
Year of Publication2017
AuthorsWang, L, He, J, Yang, Q, Li, X, Wei, H, Chen, DDY, Huang, X
JournalEcotoxicol Environ Saf
Start Page227-234
Date Published11/2017
KeywordsLANTHANUM, Rare earth elements, Toxic mechanism, Vitronectin-like protein

Vitronectin-like protein (VN) is widely found outside plant plasma membranes. The VN molecular surface contains a large number of active groups that combine strongly with rare earth elements (REEs), which means that VN is a preferential binding target for REEs exhibiting their toxic effects, but the toxicological mechanism remains unknown. This study used transmission electron microscopy, circular dichroism, fluorescence spectrometry, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, and calculational chemistry (homology modeling, molecular dynamics simulation and quantum chemical calculation) to preliminarily investigate the effect of lanthanum [La(III)] as an REE, on the structure of VN and its toxicological mechanism. The results showed that low-concentration La(III) could cause micro-interference to the VN molecular structure through weak interactions, such as electrostatic attraction. High-concentration La(III) formed stable complexes with VN, which changed the average binding energy and electron cloud density of VN, loosened the molecular structure and increased the disorder of VN molecule. The results of building a 3D model of VN and simulating the interaction between La(III) and VN using calculational chemistry showed that La(H2O)73+ in solution could coordinately bind to the carboxyl-/carbonyl-O groups in the negatively charged areas on the VN molecular surface. Furthermore, one or more strong H-bonds were formed to enhance the stability of the La(H2O)73+-VN complexes. In summary, low La(III) concentrations could cause micro-interference to the VN molecular structure, whereas high La(III) concentrations could coordinately bind to VN to form stable La-VN complexes, which destroyed the molecular structure of VN; thus the toxicological basis by which La(III) exhibits its toxic effects is its binding to VN.