SAMPLE QUESTIONS

Question 1

A 10.0 g sample of bismuth tribromide, BiBr_{3}, contains:
a) $0.322 \mathrm{~mol} \mathrm{BiBr}_{3}$
b) 5.360×10^{22} total number of ions
c) 1.34×10^{22} bromide ions
d) 3.14×10^{22} formula units BiBr_{3}
e) 4.020×10^{22} total number of ions

Question 2

When the reaction, $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})+\mathrm{KOH}(\mathrm{aq}) \rightarrow \mathrm{Al}(\mathrm{OH})_{3}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, is balanced with the smallest integer coefficients, the sum of the coefficients are:
a) 9
b) 24
c) 15
d) 12
e) 7

Question 3

Select the ion that has the following electronic configuration:
[Ar] $4 s^{2} 3 d^{10} 4 p^{3}$
a) S^{+}
b) Br^{-}
c) Ge^{+}
d) Sn^{-}
e) Se^{+}

Question 4

What is the concentration of $\operatorname{Br}^{-}(\mathrm{aq})$ in a solution prepared by mixing 75.0 mL of 0.62 M iron(III) bromide with 75.0 mL of water? Assume volumes are additive.
a) 0.93 M
b) 0.31 M
c) 1.9 M
d) 0.62 M
e) 1.86 M

Question 5

Consider the thermite reaction:
$2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Fe}(\mathrm{l})$
2.5 g of Al is treated with 7.2 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. What is the theoretical yield (in g) of liquid iron?
a) 5.17 g
b) 0.233 g
c) 5.03 g
d) 2.51 g
e) 0.873 g

ANSWERS

Question $1 \quad b$
Question 2 d
Question 3 e
Question 4 a
Question 5 c

