Research & Teaching Faculty

Enzymatic properties of native and deglycosylated hybrid aspen (Populus tremula x tremuloides) xyloglucan endotransglycosylase 16A expressed in Pichia pastoris

TitleEnzymatic properties of native and deglycosylated hybrid aspen (Populus tremula x tremuloides) xyloglucan endotransglycosylase 16A expressed in Pichia pastoris
Publication TypeJournal Article
Year of Publication2005
AuthorsKallas, AM, Piens, K, Denman, SE, Henriksson, H, Faldt, J, Johansson, P, Brumer, H, Teeri, TT
JournalBIOCHEMICAL JOURNAL
Volume390
Pagination105-113
Date PublishedAUG 15
Type of ArticleArticle
ISSN0264-6021
Abstract

The cDNA encoding a xyloglucan endotransglycosylase, PttXET16A, from hybrid aspen (Populus tremula x tremuloides) has been isolated from an expressed sequence tag library and expressed in the methylotrophic yeast Pichia pastoris. Sequence analysis indicated a high degree of similarity with other proteins in the XTH (xyloglucan transglycosylase/hydrolase) gene subfamily of GH16 (glycoside hydrolase family 16). In addition to the conserved GH16 catalytic sequence motif, PttXET16A contains a conserved N-glycosylation site situated proximal to the predicted catalytic residues. MS analysis indicated that the recombinant PttXET16A expressed in P. pastoris is heterogeneous due to the presence of variable N-glycosylation and incomplete cleavage of the a-factor secretion signal peptide. Removal of the N-glycan by endoglycosidase H treatment did not influence the catalytic activity significantly. Similarly, site-directed mutagenesis of Asn(93) to serine to remove the N-glycosylation site resulted in an enzyme which was comparable with the wild-type enzyme in specific activity and thermal stability but had clearly reduced solubility. Hydrolytic activity was detected neither in wild-type PttXET16A before or after enzymatic deglycosylation nor in PttXET16A N93S (Asn(93) -> Ser) mutant.

DOI10.1042/BJ20041749