Title | Catalytic Asymmetric Synthesis of Morpholines. Using Mechanistic Insights To Realize the Enantioselective Synthesis of Piperazines |
Publication Type | Journal Article |
Year of Publication | 2016 |
Authors | Lau, YYin, Zhai, H, Schafer, LL |
Journal | JOURNAL OF ORGANIC CHEMISTRY |
Volume | 81 |
Pagination | 8696-8709 |
Date Published | OCT 7 |
ISSN | 0022-3263 |
Abstract | An efficient and practical catalytic approach for the enantioselective synthesis of 3-substituted morpholines through a tandem sequential one-pot reaction employing both hydroamination and asymmetric transfer hydrogenation reactions is described. Starting from ether-containing aminoalkyne substrates, a commercially available bis(amidate)bis(amido)Ti catalyst is utilized to yield a cyclic imine that is subsequently reduced using the Noyori-Ikariya catalyst, RuCl {[}(S,S)-Ts-DPEN] (eta(6)-p-cymene), to afford chiral 3-substituted morpholines in good yield and enantiomeric excesses of >95%. A wide range of functional groups is tolerated. Substrate scope investigations suggest that hydrogen-bonding interactions between the oxygen in the backbone of the ether-containing substrate and the {[}(S,S)-Ts-DPEN] ligand of the Ru catalyst are crucial for obtaining high ee's. This insight led to a mechanistic proposal that predicts the observed absolute stereochemistry. Most importantly, this mechanistic insight allowed for the extension of this strategy to include N as an alternative hydrogen bond acceptor that could be incorporated into the substrate. Thus, the catalytic, enantioselective synthesis of 3-substituted piperazines is also demonstrated. |
DOI | 10.1021/acs.joc.6b01884 |