Title | Valence orbital electron momentum distributions for oxygen: comparison of EMS measurements with theory |
Publication Type | Journal Article |
Year of Publication | 1998 |
Authors | Rolke, J, Zheng, Y, Brion*, CE, Wang, YA, Davidson, ER |
Journal | Chem. Phys. |
Volume | 230 |
Pagination | 153-186 |
Date Published | May |
Type of Article | Article |
ISBN Number | 0301-0104 |
Keywords | CALCULATIONS, CONFIGURATION-INTERACTION CALCULATIONS, CORRELATED MOLECULAR, CORRELATION ENERGIES, DENSITY-FUNCTIONAL THEORY, DFT calculations, GAUSSIAN-BASIS SETS, HARTREE-FOCK LIMIT, OPEN-SHELL MOLECULES, PHOTOELECTRON-SPECTROSCOPY, PHOTOIONIZATION CROSS-SECTIONS |
Abstract | The valence shell binding energy spectra and orbital electron momentum profiles of O-2 have been measured by energy dispersive multichannel electron momentum spectroscopy at an impact energy of 1200 eV + binding energy. The effects of electron correlation on the valence binding energy spectrum are investigated using multi-reference singles and doubles configuration interaction calculations. The presently reported experimental momentum profiles of O-2 display considerably improved statistics compared with previously published EMS results. The measured momentum profiles are compared with cross sections calculated using both unrestricted and restricted open shell Hartree-Fock methods with basis sets ranging from minimal to near Hartree-Fock limit in quality. In addition, the effects of correlation and relaxation on the calculated momentum profiles are investigated using multi-reference singles and doubles configuration interaction calculations of the full ion-neutral overlap distributions. Electron correlation effects in the ground state are further examined using several density functional approaches for the momentum profiles. The present EMS measurements and MRSD-CI calculations clearly show that the binding energy peak at similar to 27.3 eV has significant contributions from both (4) Sigma(u)(-) and (2) Sigma(u)(-) processes in contrast to earlier assignments which have attributed this peak to the C-2 Sigma(u)(-) State alone. Similarly, the binding energy peak at 33 eV is shown to be due to (2) Sigma(u)(-) rather than earlier assignments of (2) Pi(u) character. (C) 1998 Elsevier Science B.V. All rights reserved. |
URL | <Go to ISI>://000073954600002 |